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SUMMARY 

VTOL control concepts, with and without s tabi l izat ion,  were optimized and 

compared on a six-degree-of -freedom motion simulator. Features of t h i s  simula- 

t o r  and i ts  s u i t a b i l i t y  f o r  VTOL research are discussed. 

t o  show which control concepts provide the best  handling qual i t ies  and require 

the l ea s t  control power, both i n  calm a i r  and i n  the presence of random dis tur -  

bances. Discussion includes a br ie f  treatment of nonlinear concepts and system 

fa i lu re  effects .  

Results are presented 

INTRODUCTION 

A c r i t i c a l  i t e m  i n  the design of VTOL a i r c r a f t  i s  the provision f o r  control 

i n  hover and low-speed f l i g h t .  

operations t o  permit the  use of aerodynamic control surfaces, control must be 

Since dynamic pressures are too low during these 

derived from the propulsion system of the vehicle i t s e l f .  

concepts, however, a re  very sensit ive t o  added burdens of any kind, and the 

amount of control required i n  hover usually resu l t s  i n  a d i rec t  trade-off with 

Most VTOL propulsion 

performance. 

interested i n  establishing minbnum acceptable levels  of control power f o r  both 

normal and emergency f l i g h t  conditions [ 11 . - Ajnyti&ing more might seriously 

l imi t  the u t i l i t y  of the vehicle, while anything l e s s  would compromise safety. 

Meedless t o  say, the designers of these vehicles are therefore 

An equally important aspect of low-speed f l i g h t  is the lack of any 

aerodynamic stab i , however, regard- the way i 



' .tliis factor  should be taken in to  account i n  control system design. Jus t  as the 

I control system provides control f o r  the p i l o t ,  it can also be used t o  s t ab i l i ze  

the a i r c ra f t .  

weighed against po ten t ia l  improvements i n  handling qua l i t i es  and/or potent ia l  

The increased cost  and complexity of such an approach must be 

reductions i n  control power. 

VTOL a i r c r a f t  i n  the past  have used various schemes t o  deal  with the 

s t a b i l i t y  problem i n  hover. 

Hawker-Siddeley P.1127 has been flying quite successfully since 1960 without 

relying on any m e a n s  other than inherent aerodynamic damping t o  prevent a t t i -  

tude divergence. 

somewhat more complicated approach by incorporating a r t i f i c i a l  rate damping t o  

As  an example of the  simplest approach, the 

Aircraft  such as the Balzac and Mirage I11 V have taken a 

protect against excessive r a t e  bui ld-up 

the VJ-101C a i r c r a f t  employs a r t i f i c i a l  methods t o  s t ab i l i ze  both rate and 

a t t i tude  i n  the hovering mode. 

As  an example of ye t  more complexity, 

Although considerable experience has been gained from these a i r c r a f t  and 

others l i ke  them, it has been d i f f i cu l t  t o  determine ju s t  which control system 

concepts are  most e f f ic ien t  i n  terms of handling qual i t ies  and control power 

requirements. 

Center has included i n  its overal l  VTOL research program a ser ies  of experi- 

ments t o  investigate a var ie ty  of low-speed control system concepts. 

i s  being done on an advanced simulator capable of large motions i n  a l l  six 

degrees of freedom. 

and t o  discuss current results on the comparison of control concepts. 

In  an e f for t  t o  answer t h i s  question, the NASA Ames Research 

This work 

It is the purpose of t h i s  paper t o  describe this equipment 

NOTATION 

I, roll moment of iner t ia ,  lb-ft-sec2 (or slug-ft2) 

L rol l ing moment, lb -f t - 
% 
% 

roll control gain, lb-f t / in .  ; - = control sensi t ivi ty ,  rad/sec2/in. 
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r o l l  rate feedback gain, lb-ft-sec/rad; 

roll a t t i t ude  feedback gain, 1% -ft/rad; 

body-axis roll ra te ,  rad/sec 

p i l o t  ra t ing 

saturation r a t i o  

steady s t a t e  

control displacement, in .  

wing ra t io ,  damping/critical damping 

M e r  angle roll a t t i tude ,  rad 

bank angle sensi t ivi ty ,  rad/in. 

L!FL = rate damping, l/sec Lx 
3 = a t t i t ude  feedback, l/sec2 
Ix 

JE undamped natural  frequency, rad/sec; 

Description of the Simulator 

The unique aspect of the six-degree-of-freedom simulator i s  i ts  motion 

capability. Other simulators have been b u i l t  with various combinations of 

motion and degrees of freedom, but the six -&wee -of -freedom simulator is 

believed t o  be the only device i n  current operation w i t h  large motion capa- 

b i l i t i e s  about a l l  six degrees. In its present configuration (Fig. l), the 

simulator is  res t r ic ted  t o  v isua l  hovering tasks, but future plans c a l l  f o r  

the addition of moving a r t i f i c i a l  v i sua l  displays in order t o  simulate t ran-  

s i t i o n  and forward f l i gh t .  

provide the large displacement cues, such as t h a t  due t o  forward speed, while 

the simulator motion w i l l  provide the short  -period perturbations about the 

steady- s t a t e  case. 

With t h i s  arrangement, the v isua l  display w i l l  
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. . Visual scene.- In  simulating the visual  hovering task, a r t i f i c i a l  d i sphys  

a re  purposely avoided. Instead, large doors i n  f ront  of the simulator are  

opened t o  provide the p i l o t  with an actual  outdoor scene. 

p l e  feature has resulted i n  a surprising degree of realism. 

course, i s  fixed (hence the r e s t r i c t ion  t o  hover tasks) ,  but it has none of the 

This relakively sim- 

The scene, of 

problems of color, resolution, and th i rd  dimension associated with a r t i f i c i a l  

displays. 

about the falseness of "indoor f l i gh t . "  

environmental e f fec ts  has long been debatable, yet  the f a c t  remains tha t  the 

In addition, i ts  open-air e f fec t  causes p i l o t s  t o  be less concerned 

Admittedly, the importance of these 

confidence l eve l  of simulator resu l t s  has consistently been degraded by the 

extent t o  which p i l o t s  must extrapolate t o  imagine the actual  f l i g h t  case. 

attempt, then, t o  reduce the a r t i f i c i a l i t i e s  of a simulation w i l l  generally 

Any 

prove worthwhile i n  the achievement of useful resu l t s .  

Motion capabi l i t ies .  - The t r ave l  envelope of the simulator is described by 

rotat ional  l imits  of k 4 5 O  i n  r o l l ,  pitch,  and yaw, w i t h  t rans la t iona l  l imits  of 

k9 fee t  i n  the longitudinal, l a t e ra l ,  and ve r t i ca l  directions. 

eration limits are a l l  greater than 6 rad/sec2. 

7 ft /sec2 horizontally, and 10 f t /sec2 ver t ical ly .  

Angular accel- 

Linear acceleration limits are  

O f  the foregoing, only the horizontal t r ave l  limits (and t o  some extent the 

horizontal acceleration limits) have been somewhat r e s t r i c t ive .  Hmver ,  experi- 

ence has shown tha t  the general hovering task with reasonably large maneuvers 

can be investigated without d i f f icu l ty ,  and, very important, without resorting 

t o  motion washout techniques. A l l  motions therefore occur ju s t  as they would 

i n  actual  f l i gh t .  

The simulator i s  powered by e l ec t r i c  motors employed i n  Ward-Leonard type 

servo systems. 

t ransfer  power t o  the l inear  modes. 

Si lent  chains transmit power t o  the angular modes, while cables 

The overal l  system operates smoothly, has 

good frequency response, and is  described by p i l o t s  t o  be very effect ive i n  

reproducing the important sensations of hovering f l i g h t .  
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Some Effects of Motion . . *  

The degree t o  which motion contributes t o  the va l id i ty  of simulator resu l t s  

is  d i f f i c u l t  t o  discuss i n  general terms. Previous treatment of t h i s  subject 

[2 ,3 ]  has indicated that the necessity f o r  motion cues i s  dictated more often by 

the  par t icular ,  ra ther  than the general, aspects of a given f l i g h t  s i tuat ion.  

In  other words, examination of a general f l i g h t  task may indicate the absence of 

s ignif icant  motion f o r  a l l  but  a par t icu lar  p a r t  of t h a t  t ask  i n  which motions 

or  accelerations may be the p i l o t ’ s  predominant cue. 

t o  determine under what circumstances a p i l o t  w i l l  respond primarily t o  either 

v isua l  cues or  motion cues, or a conibination of both. 

The r e a l  problem here i s  . 

Experience w i t h  the  six-degree-of-freedom simulator has shown tha t  motion 

cues can be extremely important t o  the sinaulation of VTOL hovering tasks. 

the value of motion becomes apparent only i n  par t icu lar  instances, f o r  the gen- 

eral hovering task i s  primarily one i n  which p i l o t s  respond t o  visual  cues. 

Those instances where motion was f e l t  t o  be essent ia l  have been experienced i n  

at  least four separate s i tuat ions.  One example occurred during control system 

studies i n  which undesirable short-period pilot-induced osci l la t ions were often 

c r i t i c a l  t o  system evaluations. 

generally suppressed beyond recognition i n  a visual  display. Another example 

occurred during similar studies, t h i s  time involving system which were some- 

tinaes characterized by large phase lags between p i l o t  input and a i r c r a f t  

response. 

required extremely dangerous phase lags before the p i l o t  became even aware of 

t h e i r  presence. 

ures, such as a sudden loss  of a l if t-engine or  a stabil i ty augmentation system. 

In simulations without motion these s i tuat ions were frequently indicated t o  be 

more severe than they really were, simply because corrective actions were 

unnecessarily delayed upon v isua l  recognition of the problem. When motion was 

present, corrective actions were taken i n  response t o  the acceleration effects  

of the fa i lure ,  ra ther  than the lagging visual  effects .  

Again, 

These osci l la t ions were of the type which a re  

Attempts t o  assess ident ica l  s i tuat ions i n  simulators without motion 

A third instance concerned studies of p i l o t  response t o  fa i l -  

A s  a result, corrections 
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were quicker, displacements were less, and recovery was  often no problem. The 

I fourth example was encountered during tests of a lateral acceleration device 

f o r  VTOL applications. A c r i t i c a l  factor  i n  the ta i lor ing  of t h i s  system was 

the amount of lateral acceleration the p i l o t  could to l e ra t e  comfortably. Obvi- 

ously, nonmoving simulators cannot reproduce s i tuat ions i n  which p i l o t  comfort 

i s  a factor,  nor f o r  t h a t  matter, any s i tua t ion  i n  which pilot-vehicle dynamic 

coupling is involved. 

While motion is essent ia l  i n  instances such as those described i n  the 

preceding paragraph, it should not be concluded tha t  meaningful results cannot 

be obtained from nonmoving simulators. When used f o r  comparative type studies, 

these devices are extremely useful. 

resu l t s  a re  conservative o r  optimistic w i l l  eventually become a matter of con- 

cern. Unfortunately, the question has no simple answer, since the lack of 

motion can fa l se ly  aggravate a s i tua t ion  (as i n  the case of failures), or it 

can fa l se ly  suppress a serious problem (as i n  the case of phase lags o r  p i l o t -  

induced osc i l la t ions) .  

The extent t o  which they cannot, however, must be added t o  the burden of 

subsequent f l i g h t  research. 

However, the question of whether t h e i r  

To some extent, these factors  can be taken into account. 

Simulator Validation - Comparison With Flight 

Before using the simulator f o r  general VTOL research, a study was made t o  

determine how w e l l  i t s  results might compare w i t h  those obtained i n  actual  f l i gh t .  

A few resu l t s  from t h i s  study are presented i n  Fig. 2. 

The airplane used f o r  comparison was the B e l l  X-14 j e t - l i f t  VTOL. It was 

equipped w i t h  a rate-damped control system i n  which both control power and damp- 

ing could be varied [41. 

way, concurrent t e s t s  were run  t o  evaluate various combinations of control power 

and damping on the basis  of a nearly similar task.  

With the simulator mechanized i n  a nearly ident ical  

The bands indicate the combinations that resulted i n  both a 3-1/2 and a 

6-1/2 p i l o t  ra t ing [ 51. Good agreement between simulator and f l i g h t  i s  apparent 
d 
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i n  both cases. 

necessary; it merely helps t o  substantiate earlier remarks that the simulator 

is capable of providing valid preliminary results,  so tha t  subsequent f l i g h t  

tests can be abbreviated. 

This resu l t  does not mean tha t  f l i g h t  research is  no longer 

TESTS 

The control systems tests discussed i n  the remainder of t h i s  paper are 

concerned with VTOL a i r c ra f t  which require a t t i tude  changes i n  order t o  t rans-  

late. Such a i r c r a f t  are  characterized by thrust  vectors fixed i n  re la t ion t o  

the a i rc raf t ,  thus requiring rotation of the en t i re  vehicle i n  order t o  generate 

a horizontal force. 

The foregoing is  i l lus t ra ted  i n  Fig. 3, along with the essent ia l  elements of 

the control system itself .  

what effect  various s tabi l izat ion feedback techniques and control input tech- 

niques would have on handling qual i t ies  and control power requirements. It 

should be noted tha t  f o r  simplicity i n  t h i s  study, aerodynamic effects  were 

ignored altogether; hence, the a i r c ra f t  was  assumed t o  have no inherent 

stabil ization. 

The general objective of the study was  t o  determine 

Description of Systems Studied 

Linear systems.- The majority of the study deals with control concepts 

Proportional using proportional control and l inear  s tabi l izat ion feedback. 

control means simply that the output of the p i lo t ' s  controller varied 

l inear ly  with his  input. 

Three basic concepts f o r  controlling a t t i tude  were tested and compared. 

For purposes of discussion, they w i l l  be referred t o  as: the acceleration 

system, the rate s y s t e m ,  and the a t t i tude  system. 

each system are presented i n  Fig. 4. 

The descriptive elements of 

The acceleration system has no stabil izing feedbacks. As  i t s  time history 

shows, s t i ck  deflections produce steady-state acceleration, and the p i l o t  must 
4 
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. grovide s t a b i l i t y  and angular-rate damping while controlling attitude. The 

control-system variables pertinent t o  t h i s  system are control power and control 

sens i t iv i ty  . 
,J 

The ra te  system i s  obtained simply by providing the acceleration system 

with angular-rate feedback. For t h i s  case, s t ick  deflections produce steady- 

state rate.  

but he does not have t o  worry about excessive rate buildup. 

associated with the r a t e  system are control power, control sensit ivity,  and 

damping. 

To control att i tude,  the p i l o t  must provide a t t i tude  s tab i l i ty ,  

The variables 

Damping i s  s imp ly  the gain i n  the rate feedback loup. 

The a t t i tude  system goes one step beyond the rate system by incorporating 

a t t i tude  feedback i n  addition t o  r a t e  feedback. For t h i s  system, p i lo t s  com- 

mand steady-state a t t i tude  proportional t o  s t i ck  deflection, and a l l  s tabi l iz ing 

requirements are  automatically provided. 

a t t i tude  system are  control power, control sensi t ivi ty ,  damping, and frequency. 

Frequency refers  here t o  the undamped natural  frequency of the system. 

a commonly used measure of the s t a b i l i t y  of a second-order system; more pre- 

cisely, frequency i s  equal t o  the square root of the gain i n  the a t t i tude  feed- 

back loop. 

defined by frequency alone, but by frequency and damping together. 

th i s ,  the time history shown i n  the bottom of Fig.4 is  typical  of a samewhat 

underdamped case; t h a t  is, if  damping were increased, the oscil lations could be 

made t o  disappear. 

The variables which describe the 

It is  

The actual  oscil latory characterist ics of an a t t i tude  system are  not 

To i l l u s t r a t e  

Nonlinear system.- A tes t  was also conducted t o  study the characterist ics 

of a nonlinear variation of the a t t i tude  system. 

a t t i tude  system with saturation. 

proportional control and nonlinear feedback i n  a manner such tha t  large control 

It w i l l  be referred t o  as the 

Very briefly,  t h i s  system cordbined both non- 

inputs by the p i l o t  had a temporary cancelling effect  on the feedback signals. 

A more detailed explanation of t h i s  system is presented later along with a 

discussion of i ts  resul ts .  
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T e s t  Conditions 

The conditions f o r  the majority of the tests are shown i n  Fig. 5 .  The 

only exception involved a br ie f  series of tests t o  evaluate the e f fec t  of random 

upset disturbances. A s  a general rule, simplicity w a s  stressed t o  ensure a basic 

understanding of each control system before subjecting it t o  complex conditions. 

For exarrrple, ra ther  than attempting a t  t h i s  stage t o  optimize control s t i c k  

geometry and force characterist ics,  a representative set of values was selected 

and held constant throughout the tests. 

For a l l  of the t e s t  conditions, the simulator was operated i n  the six-degree 

mode. However, systematic data were generated fo r  the roll axis only. This w a s  

done f o r  the following reasons: f irst ,  the r o l l  axis i s  usually more c r i t i c a l  

than pi tch or yaw; i n  addition, rol l -axis  data should qual i ta t ively apply t o  the 

pi tch axis. 

identically w i t h  the r o l l - a x i s  parameters throughout the t e s t s .  

From the l a t t e r  standpoint, the pitch-axis parameters were varied 

Since the  yaw 

axis was not considered of primary concern, it w a s  permanently maintained as a 

satisfactory rate system. 

Three p i lo t s ,  each with a diverse test  background including considerable 

VTOL experience, participated i n  the t e s t .  

phases of the study, and the th i rd  was used f o r  selected ver i f icat ion of the 

resul ts .  

Two of the p i lo t s  were used i n  a l l  

The p i lo t s  performed the same tasks and used the same method of 

evaluation [ 51 . 

Evaluation Tasks 

The simulator task was designed simply as a general hover task and a general 

maneuver task. 

comparison, no further attempt was made t o  define tasks which would be univer- 

sally representative of actual  f l i g h t  si tuations.  

generally agreed tha t  the VTOL task is  not universal i n  the  first place; t ha t  is, 

it w i l l  vary with vehicle s ize  and mission.) 

Since the main intent  was t o  establ ish a common basis fo r  system 

(In actual i ty  it i s  now 

d 
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The hover task was divided in to  two par t s :  precision hovering a t  a point 

i n  space, and precision a l t i t ude  changes t o  simulate takeoff and landing. 

maneuver task consisted of t ranslat ion s tar t -s tops and roll reversals. 

The 

Because of t h e i r  nature, the simulator tasks are believed t o  be more demand- 

ing than t h e i r  counterparts i n  f l i gh t ,  a t  least f o r  the majority of VTOL a i r c ra f t .  

For example, the  precision hover task involved the p i l o t ' s  a b i l i t y  t o  hover a 

given system within l imi t s  on the  order of 22 feet. 

a i r c ra f t ,  though f'ully sui table  f o r  their  own design mission, would have d i f f i -  

It i s  obvious t h a t  many VTOL 

cul ty  hovering within l imits  several  times t h i s  amount. 

case, the s tar t -s tops were perforrned by moving rapidly from one hover point t o  

For the  maneuvering 

another, separated by distances of about 15 fee t .  

r e a l i s t i c  s i tua t ion  i n  actual  f l i gh t ,  the existence of physical t r ave l  l imi t s  i n  

While th i s  might represent a 

the simulator tend t o  make p i l o t s  c r i t i c a l  of errors  which might be unnoticed i n  

f l i gh t .  

The foregoing was pointed out  i n  order t o  emphasize the f a c t  t h a t  the 

simulator resu l t s  discussed i n  the next section are  val id  primarily fo r  comparison 

purposes, and should not be taken i n  an absolute quantitative sense. Final def i -  

nit ions of system requirements w i l l  s t i l l  depend on subsequent f l i g h t  t e s t s ,  where 

tasks can be expanded in  a more r e a l i s t i c  manner. 

RESULTS AND DISCUSSION 

The t e s t s  began w i t h  the  optimization of variables f o r  each of the systems 

previously described. 

undertaken, f irst  i n  calm air, followed by a br ie f  comparison i n  the presence of 

random disturbances. 

When t h i s  was completed, a conrparison of systems was 

Optimization of Parameters 

During the optimization studies, control power w s  held constant a t  a 

re la t ive ly  high value (2 rad/sec2) i n  order t o  minimize any influence it may have 

4 
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had on the resul ts .  

sens i t iv i ty  was less than 0.4 rad/sec2/in., since s t i c k  t r a v e l  was limited t o  

A n  unavoidable exception t o  t h i s  occurred whenever control 

55 inches. 

None of the  variables was found t o  have a strong ef fec t  on p i l o t  ra t ing i n  

the area near the  optimum. Optimums are therefore presented as ranges (or  bands) 

ra ther  than points (or lines). The width of these ranges (or bands) was arb i -  

trarily established t o  include a p i lo t - ra t ing  increment of about 1/4 t o  e i the r  

side of the point where p i l o t  ra t ing was bes t .  

Acceleration system.- Figure 6 simply shows the var ia t ion of p i l o t  ra t ing 

over a wide range of control sens i t iv i ty ,  w i t h  the  optimum range lying between 

0.4 and 0.8 rad/sec2/in. 

ac t e r i s t i c s  of the control s t i c k  used i n  these t e s t s  may not be optimum. 

(It i s  important t o  recognize that the mechanical char- 

Changes, 

f o r  example, i n  s t i c k  force gradient, could a l t e r  these nuniber somewhat.) 

There are  no other variables t o  optimize f o r  the acceleration system. Before 

continuing, however, it should be noted tha t  th is  type of test  was used t o  deter- 

mine optimum control sens i t iv i ty  f o r  the r a t e  system, and later on fo r  the a t t i -  

tude system. For the ra te  system, the test  was merely repeated a t  various levels 

of constant damping. 

t i o n  system can be considered as a rate system with zero damping. 

Results here served as a s t a r t i ng  point, since the accelera- 

Rate system.- Figure 7 shows the e f fec t  of damping on the optimum sens i t iv i ty  

range f o r  the r a t e  system. This is indicated by a band which was drawn through 

the optimum sens i t i v i ty  ranges found a t  various levels of constant damping. 

intercepts on the zero damping axis correspond t o  the acceleration system jus t  

discussed. 

u n t i l  high damping values of about -5 per  second were reached. 

increases i n  sens i t i v i ty  were required t o  compensate f o r  sluggish response. 

Otherwise, s t i c k  motions t o  produce maneuvering roll rates became uncomfortably 

large.  (This r e su l t  can be understood through study of the relationship f o r  roll- 

ra te  sensi t ivi ty ,  Pss/6, shown i n  the f igure . ) 

The 

Increasing the damping did not change the optimum sens i t iv i ty  range 

Beyond tha t  point, 
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An optbum damping range f o r  the r a t e  system was found by examining the 

variation of p i l o t  ratings along the optimum sens i t i v i ty  band. For damping less 

than -2 per second, problems similar t o  those f o r  the acceleration system became 

apparent; while for damping greater than -5 per  second, the r a t e  system was f e l t  

t o  be overly "tight" i n  response. 

s i t i v i t y  band thus creates the optbum "area" shown i n  the figure.  

Superimposing these l imi t s  on the opthum sen- 

The optimum rsnges f o r  the rate system provide a s t a r t i ng  point f o r  discussion 

of the a t t i t ude  system. 

when a t t i t ude  feedback is  applied. 

In  other words, the next f igures w i l l  show how they vary 

Attitude system.- Results concerning opthum control sensi t ivi ty ,  optimum 

damping, and optimum frequency fo r  the a t t i t ude  system are  contained i n  Figs. 8, 

9, and 10, respectively. To preface the discussion of these figures,  it should 

be noted tha t  sens i t iv i ty  and damping were found t o  be interdependent variables, 

and the resu l t s  i n  Figs. 8 and 9 should be interpreted accordingly. 

i s  implicit i n  Fig. 8 tha t  damping has been optimized according to i t s  var ia t ion 

(That is, it 

shown i n  Fig. 9, and vice versa.) 

Figure 8 shows the variation i n  optimum control sens i t iv i ty  with frequency. 

The intercepts a t  zero frequency correspond t o  the optimum sens i t iv i ty  range f o r  

the r a t e  system discussed i n  the preceding figure.  A s  frequency was increased, 

the optimum sens i t iv i ty  values a t  first remained constant, and finally s ta r ted  t o  

increase a t  frequencies above 3 rad/sec. The increase i n  sens i t iv i ty  was required 

t o  overcome the increasing s t a b i l i t y  of the system (a s i tua t ion  somewhat analogous 

t o  the sluggishness of the r a t e  system at  high values of damping). 

The equation shown i n  Fig. 8 expresses the relationship of bank-angle 

sens i t iv i ty  t o  control sens i t iv i ty  and frequency. 

steady-state bank angle per inch of s t i c k  deflection.) 

where optimum control sens i t iv i ty  i s  seen t o  be relat ively constant, optimum bank- 

angle sens i t iv i ty  must approach in f in i ty  as frequency goes t o  zero. This corre- 

(Bank-angle sens i t iv i ty  i s  the 

In  the frequency range 

sponds, of course, t o  the f a c t  t h a t  bank-angle sens i t iv i ty  f o r  a rate system is 

in f in i t e .  A t  high values of frequency, optfmum control sens i t iv i ty  is seen t o  

increase i n  a manner whichjcauses bank-angle sens i t iv i ty  t o  approach a constant 
12 



* range from about 0.04 t o  0.06 rad/in. For the control s t i c k  geometry used i n  these 

tests, t h i s  range could be re-expressed as from about 2/3O t o  lo of bank per  degree 

of s t i c k  deflection. The important thing t o  note here i s  t h a t  for frequencies l e s s  

than 3 rad/sec, p i l o t s  are concerned about control sensi t ivi ty ,  not bank-angle sen- 

s i t ivi ty .  

ra ther  than cer ta in  steady-state bank angles. 

erat ion is  the same as f o r  the two systems a l r e a w  discussed. 

/ 

They want s t i c k  deflections t o  produce cer ta in  initial accelerations 

As  it turns out, the desired accel- 

Figure 9 shows the  var ia t ion of optimum damping with frequency. Once.again 

the intercepts a t  zero frequency represent the values required f o r  a rate system. 

It is important t o  note t h a t  the damping parameter used on the ordinate i s  the 

damping-to-inertia ra t io ,  and not the familiar damping ra t io ,  f ,  normally used 

t o  describe second-order systems of t h i s  type. 

values of f appear as l ines  of constant slope i n  Fig. 9. The curve shows tha t  

optimum damping-to-inertia r a t i o  is re la t ive ly  constant with frequency up t o  fre- 

quencies of about 3.0 rad/sec. 

a basic leve l  of damping than the overshoot or  undershoot character is t ics  which 

occur as a function of damping r a t i o  5 .  

ever, overshoot must be considered, and optimum damping appears t o  be asymptotic 

t o  a constant f of around 0.5. 

Using the relationship $/I& = 25%, 

This indicates t ha t  p i l o t s  are more concerned w i t h  

For frequencies above 3.0 rad/sec, how- 

Optimum frequency f o r  the a t t i t ude  system is shown i n  Fig. 10. A t  various 

levels of constant control power, p i l o t  ratings were obtained as frequency was 

varied over a range from 0 t o  4 rad/sec. A t  each frequency, control sens i t iv i ty  

and damping had been s e t  at  optimum values (according t o  Figs. 8 and 9) p r io r  t o  

evaluation. Since the steady-state bank-angle capabili ty of a l inea r  a t t i t ude  

system is equal t o  the r a t i o  of maximum control power t o  frequency squared, it 

was expected that optimum frequency would decrease i n  some manner with control 

power i n  order t o  avoid bank-angle l imitations.  However, f o r  control powers 

greater 

1.4 and 

stable,  

than 0.5, optimum frequency was found t o  l i e  i n  a constant band between 

2.6 rad/sec. 

and too much p i l o t  a t tent ion was  necessary t o  control a t t i tude .  

A t  frequencies below 1.4 rad/sec, the system was insuff ic ient ly  

Above 
1 



. - 2-6 rad/sec the system was overly s table .  While t h i s  e f f ec t  was desirable fo r  

steady precision hovering, maneuvering was  d i f f i c u l t  because it required large 

control motions. 

the systembecame overly sensi t ive i n  hover. 

the p i lo t s  as one of excessive "stiffness". 

When control s ens i t i v i ty  was increased t o  improve maneuvering, 

The overal l  e f f ec t  is  described by 

System Comparisons 

The resu l t s  of the parameter optimization studies are summarized i n  Fig. ll. 

Each of the three systems was optimized according t o  the mean values therein so 

that  val id  comparisons of their  handling qua l i t i es  and control power requirements 

could be made. 

Comparisons i n  calm air.- Figure 12 presents the variation of p i l o t  ra t ing 

w i t h  control power f o r  the acceleration, rate, and a t t i t ude  systems i n  calm air. 

The acceleration system i s  seen t o  be unsatisfactory f o r  the simulator task, 

regardless of control power. In essence, t h i s  system places excessive demands on 

the p i l o t ' s  a b i l i t y  t o  perceive rates, ant ic ipate  a t t i tudes,  and then provide the 

proper lead time i n  his control inputs so that he can maintain some degree of pre- 

cision. Recoveries i n  the event of mistakes can be accomplished if  large amounts 

of reserve control power are available, but no amount of control power can compen- 

sa te  f o r  the excessive workloads involved w i t h  t h i s  system. 

Comparison of a l l  three systems indicates t ha t  the progressive addition of 

s tab i l iza t ion  not only improves handling qual i t ies ,  a r e su l t  which was expected, 

but a l so  allows s ignif icant  reductions of control power. 

control power 'for a sat isfactory a t t i t ude  system i s  almost 4 0  percent less than 

that required f o r  a sat isfactory r a t e  system. 

For example, the minimum 

If the ava i lab i l i ty  of control power were no problem, it would appear from 

Fig. 12 tha t  a r a t e  system would provide nearly the same benefits  as the a t t i t ude  

system. However, since p i l o t s  ra re ly  give ratings b e t t e r  than 2, it must be con- 

cluded tha t  the a t t i t ude  system has def in i te  superior i t ies  worth pursuing. These 

superior i t ies  a re  ref lected mainly i n  the hovering and precision maneuvering tasks. 

P i lo t  coments indicate th9 t  the  attitude system allows these tasks t o  be performed 

14 . 



. . .with very l i t t l e  e f fo r t ,  

system requires constant 

ing the two systems f e l t  

more responsive. 

almost i n  a "hands-off'' sense at  times, whereas the  rate 

p i l o t  a t tent ion.  On the other hand, f o r  random maneuver- 

surprisingly alike,  although the r a t e  system was somewhat 

Effect of disturbances.- It could, of course, be disastrous t o  provide control 

power suff ic ient  only f o r  hovering and maneuvering i n  calm air. 

t r o l m u s t  be powerful enough t o  s a t i s f y  two additional requirements: t h a t  f o r  trim 

and t h a t  fo r  controlling upsets o r  disturbances. 

control power should be dictated by the simple addition of a l l  requirements; such 

a conservative approach would unduly compromise efficiency. 

control power should be equated only t o  the  most c r i t i c a l  requirements. 

contrary, a p rac t i ca l  design should account f o r  the c r i t i c a l  case, w i t h  some mar- 

gin t o  allow limited operation i n  the others. 

information about the individual e f fec ts  of a l l  three factors .  

I n  reality, con- 

This does not mean that  t o t a l  

Nor does it mean tha t  

To the 

To arr ive a t  such a design requires 

Control power required f o r  tr im depends on an a i r c r a f t ' s  aerodynamic and 

mechanical configuration, and can usually be calculated o r  measured experimentally 

t o  a sat isfactory degree of accuracy. In essence, t h i s  is  a problem of s t a t i c s .  

The analysis of disturbance effects ,  on the other hand, is complicated by 

dynamic considerations which require knowledge about an a i r c r a f t ' s  suscept ibi l i ty  

t o  upset. 

moments), but now the a i r c r a f t  s i ze  (mass and ine r t i a )  must be taken into account. 

Jus t  as important i s  the nature of the disturbance i tself .  

of disturbance typical ly  encountered i n  gusty air may be quite different  from that 

due t o  ground effect  and recirculation, and it is not always c lear  which is  the most 

c r i t i c a l .  

Configuration i s  again important ( i n  the calculation of disturbance 

For example, the  type 

To obtain a preliminary understanding of disturbance effects ,  each of the 

systems i n  Fig. I2 was re-examined i n  the presence of an a r t i f i c i a l  disturbance 

which created random angular accelerations about the  r o l l  axis. 

his tory of t h i s  disturbance is  shown i n  Fig. 13. 

A sample time 

Nominal frequency and peak 

d 
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* amplitude could be varied without a l te r ing  the basic wave shape. 

however, it was found t h a t  frequency had a re la t ive ly  minor e f fec t  on p i l o t  rating. 

The parameter of most significance was the  r a t i o  of peak disturbance acceleration 

t o  control power (at least f o r  control powers between 0.8 and 2.0 rad/sec2). 

Actually, 

The curves of Fig. 13 i l l u s t r a t e  the degradation i n  p i l o t  rating with 

increasing disturbance intensi ty  f o r  the acceleration, ra te ,  and attitude systems 

of Fig. 12. Results a re  a l so  shown f o r  a more s table  a t t i t ude  system with an % 

of 4 rad/sec. The task  performed t o  obtain these results was l imited t o  precision 

hovering only; the maneuvering task  was omitted on the reasoning that a disturbance 

s i tua t ion  would force p i l o t s  t o  concentrate on the tasks of keeping the a i r c r a f t  

l eve l  and compensating f o r  unwanted drift .  

the curves, a fur ther  appreciation of t he  aforementioned benefi ts  of s tab i l iza t ion  

can be obtained. 

affected by disturbances. 

By comparing intercepts and slopes of 

The acceleration system hovers poorly i n  calm air and i s  strongly 

The r a t e  system has a re la t ive ly  good rat ing f o r  calm 

air hovering and can to le ra te  peak disturbances of about 15 percent of the ava i l -  

able control power before becoming unsatisfactory. 

not only the best calm air  perfomnance but  a l so  the lowest suscept ibi l i ty  t o  dis- 

turbance. The optimum a t t i t ude  system (Wn = 2 rad/sec) has a disturbance to le ra-  

t i on  of nearly 40 percent, over twice that of the rate system. 

The a t t i t ude  systems exhibit  

Although the  disturbance to le ra t ion  of the  optimum a t t i t ude  system appears 

more than adequate f o r  prac t ica l  applications, there may be instances when dis- 

turbance e f fec ts  d ic ta te  an even higher degree of s t ab i l i t y .  As  an indication of 

what some added s tab i l iza t ion  would provide i n  the way of disturbance toleration, 

the curve f o r  

t ha t  t h i s  frequency i s  considered Lapractical f o r  l i nea r  a t t i t ude  systems because 

of l imitations previously discussed. 

permit the use of higher frequencies. 

% = 4 rad/sec has been included. It should be recognized, however, 

On the other hand, nonlinear designs may 

It should be understood t h a t  the addition of s tab i l iza t ion  reduces but does 

not eliminate a t t i t ude  displacements due t o  disturbances, unless of course the 

d 
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system is of i n f i n i t e  gain. 

combined with low inherent configuration suscept ib i l i ty  t o  upsets, could result 

i n  a vehicle with no apparent s ens i t i v i ty  t o  distubances. 

Prac t ica l  amounts of s tabi l izat ion,  however, 

System Improvements 

It now becomes a t t r ac t ive  t o  consider poss ib i l i t i e s  f o r  fur ther  improvement 

of the a t t i t ude  system ( i n  par t icular ,  t o  determine whether t h i s  type of system 

can be made t o  operate a t  lower control power levels and s t i l l  r e t a in  superior 

handling qual i t ies) .  Prerequisite t o  t h i s  objective i s  a c lear  understanding of 

a l l  the factors  which a f fec t  the control power requirements of the l i nea r  a t t i t ude  

system i n  general. These factors  are summarized i n  Fig. 14. 

Factors affecting control power of l inear  a t t i t ude  systems.- The curves of 

Fig. 14 show the manner i n  which control power requirements of l i nea r  a t t i t ude  

systems vary with frequency i n  order t o  maintain constant levels  of handling quali-  

t i e s .  

represented by a l i ne  of contant p i l o t  ra t ing equal t o  3-l/2, and control powers 

less  than those associated w i t h  t h i s  l i ne  would r e su l t  i n  unsatisfactory systems. 

Also shown are  l ines  of constant p i l o t  ra t ing equal t o  2-1/2 and 2 t o  indicate the 

additional control power required t o  obtain increasingly superior handling qual i t ies .  

Minimum acceptable handling qual i t ies  f o r  sat isfactory task performance a re  

The curves appear t o  be shaped by the influence of four factors.  A s  would be 

expected from earlier discussion, the minimum control power requirement for each 

curve occurs a t  a frequency of about 2 rad/sec. Control powers i n  this region are  

dependent priraaril;y on maneuvering response, or  more preeisely, a t t i t ude  response. 

In  other words, there is  a leve l  of control power below which a t t i t ude  response 

i s  inadequate f o r  the maneuvering requirements of the task. 

A t  low frequencies ( less  than optimum), the curves are influenced by problems 

of insuff ic ient  a t t i t ude  s t ab i l i t y .  

region, errors  are more l ike ly  t o  occur and extra  control power is needed as a 

Because control is  less precise i n  t h i s  



. -  
margin f o r  t h e i r  correction. Notice, however, t ha t  t h i s  statement does not 

comqletely describe the  case f o r  the  curves of superior handling qual i t ies .  

These curves eventually rise asymptotically t o  minimum levels of a t t i t ude  

s t ab i l i t y ,  whereupon additional control power no longer has any effect .  This 

result fur ther  i l l u s t r a t e s  the deficiency of the rate system; tha t  is, a cer- 

t a i n  amount of a t t i t ude  s t a b i l i t y  i s  required t o  avoid excessive demands upon 

p i l o t  a t tent ion t o  the overal l  task. 

A t  frequencies ju s t  above the  optimum, insuff ic ient  bank angle becomes a 

For l inear  a t t i t ude  systems, maximw bank angle is determined by the factor.  

r a t i o  of maximum control power t o  frequency squared. 

increased accordingly t o  maintain whatever bank-angle capabili ty i s  required t o  

Control power must be 

perform a given task. Otherwise, maneuverability would suffer  because of inade- 

quate horizontal force generation. 

A t  high frequencies, the a t t i tude  system eventual& becomes uncomfortable 

t o  the p i lo t .  Since system s t i f fness  i s  the basic objection a t  t h i s  point, no 

amount of control power w i l l  solve the s i tuat ion.  

The requirement fo r  nonlinearity.- It is evident from the foregoing that 

control power reductions are possible only for  those a t t i t ude  systems i n  the fre- 

quency range from about 2 t o  3 rad/sec. The margin f o r  improvement, however, i s  

limited by the extent t o  which the inadequate response and insuff ic ient  bank- 

angle problems can be overcome. 

i n  e i ther  respect, it now becomes necessary t o  examine nonlinear techniques. 

Since the l inear  system has no fur ther  potent ia l  

Nonlinear systems can be devised i n  a l imit less  variety, and the  complete 

However, the par t icular  coverage of even a f e w  is  beyond the  scope of t h i s  paper. 

elements of the problem at hand suggest a general approach. F i r s t ,  the  inadequate 

response problem is one which lends itself more readily t o  the use of nonpropor- 

t i ona l  control i n  the  p i lo t ' s  s t ick.  ( A n  extreme case of nonproportional control 

was  shown [6] t o  allow dramatic reductions i n  control power and may, in a modified 

form, be applicable here as well.) The problem of insuff ic ient  bank angle, on the 

other hand, suggests the use of nonlinear s tab i l iza t ion  feedback. 
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In essence, the whole approach t o  nonlinear system design is a ta i lor ing  

process, and must take into account the incompatible demands of the  VTOL task.  

I n  simple terms, an e f f i c i en t  control system must be adaptive t o  both the 

s t a b i l i t y  requirements f o r  hovering and the response requirements f o r  maneuvering. 

Tests of a nonlinear a t t i t ude  system.- A s  pa r t  of a continuing program t o  

investigate nonlinear control methods, tests were conducted on a re la t ive ly  

simple nonlinear a t t i t ude  system which appeared t o  offer  a simultaneous solution 

t o  the response and bank-angle problems mentioned above. The system has some- 

times been cal led an a t t i t ude  system with saturation control, but w i l l  be referred 

t o  here as the saturation system. 

Technically, the saturation system i s  based on the principle of providing the 

p i l o t ' s  control with more acceleration command than is actual ly  available i n  the  

control system i t s e l f .  

system of equal control power are  shown i n  Fig. 15. 

Diagrams comparing the saturation system with a l inear  

(The l inear  system therein is  

typ ica l  of a low control power system with optimized sens i t iv i ty  but with re la t ive ly  

wide-spaced stops on control t ravel .  

is  not l inear  i n  the pure sense of the word. ) 

This explains why  the output of the control 

With the l inear  system, the p i l o t  

can never command the control system t o  produce more than i ts  available moment 

(or acceleration).  With the saturation system, large inputs from the p i l o t ' s  con- 

t r o l h a v e  the e f fec t  of saturating the  control system a t  its maximum output, a 

condition which temporarily produces pure acceleration. Once the feedback signals 

become large enough t o  counteract the control input, the control system unsaturates 

and behaves ju s t  l i k e  a l inear  system. 

on the difference between the control and feedback signals. 

produce saturation. 

( In  the precise sense, saturation depends 

Large, quick inputs 

Large, slow inputs do not.)  

The saturation system is a t t r ac t ive  from three standpoints. F i r s t ,  it provides 

maximum i n i t i a l  response ( i n  fac t ,  pure acceleration) for the  large, quick control 

inputs typ ica l  of rapid maneuvering. Secondly, the system retains  a constant l eve l  



of s t a t i c  s t a b i l i t y  upon reaching any steady-state bank angle. The th i rd  advantage 

of the saturation system i s  that it provides a simple method for increasing maximum 

bank angle without increasing control power. 

The system can be described i n  terms of i t s  saturation ra t io ,  which is simply 

the r a t i o  of maximum command moment from the s t ick  t o  that actually available from 

the control system. Note from the diagram tha t  saturation r a t i o  is a direct  indi-  

cation of bank-angle magnification. 

w i l l  provide a maximum bank angle three times tha t  of a l inear  system (SR = 1) 

with the same available control power. 

For example, a saturation system with SR =: 3 

Tests of the saturation system were quite complicated, but the important 

resul ts  are presented quite simply i n  Fig. 16. 

requirements f o r  a l inear  a t t i tude  system and a saturation at t i tude system, each 

with a satisfactory (3-l/2) p i l o t  rating. 

tha t  saturation allows a re la t ively insignificant control power reduction of 

about 10 percent. 

frequency, so tha t  when the factors of upset are taken into account, the effective 

reduction m i g h t  be more on the order of 15 percent. 

This figure shows the control power 

Comparison of these curves indicates 

However, saturation also resul ts  i n  an upward s h i f t  of optimum 

The benefits of saturation resul t  primarily from increased bank angle. 

(Improvements i n  response were relat ively insignificant . ) 
however, is a degrading phase lag characterist ic between p i l o t  input and a i r c ra f t  

response which i s  aggravated by the amount of saturation. 

t an t  t o  realize tha t  saturation should not be used unless a barik-angle problem 

exists in the first place. 

phase lag begins t o  dominate. 

Inherent with t h i s  system, 

Therefore, it i s  impor- 

Even then, i t s  benefits are  limited t o  the point where 

In swnmary, it is evident that saturation systems have potent ia l  benefits. 

However, the present resul ts  

w i l l  depend primarily on the 

response, and t h i s  may prove 

that other nonlinear systems 

of the saturation system., 
d 

indicate that  significant reductions in  control power 

development of be t te r  nonlinear methods of optimizing 

d i f f icu l t .  In any event, it is important t o  real ize  

may introduce the same phase-lag dangers characterist ic 
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System Failures 

A n  undesirable feature of control system complexity i s  the increased 

poss ib i l i ty  of fa i lures .  

simplicity t o  such an extent t ha t  handling qual i t ies  have often been compromised. 

In modern aircraft design, handling qual i t ies  are recognized t o  be jus t  as impor- 

t an t  t o  overall  safety as control system re l i ab i l i t y .  

For t h i s  reason alone, past  designs have stressed 

Figure 1 2  contains some interest ing implications regarding fa i lures .  For 

example, if a sat isfactory (p i lo t  ra t ing of 3-1/2) a t t i t ude  system should experi- 

ence a failure i n  i ts  a t t i tude  feedback loop, it would revert  t o  a rate system 

w i t h  a p i l o t  rating of about 5 .  This is  because i ts  sens i t iv i ty  and damping are  

essent ia l ly  the  same as those f o r  the rate system shown i n  the  sane figure. 

the same reasoning, i f  a sat isfactory a t t i tude  system l o s t  both i ts  feedback loops, 

it would revert  t o  an acceptable ( for  emergency operation) acceleration system. 

The only case not shown here i s  the one fo r  a f a i lu re  of the damping loop i n  the  

a t t i tude  system. 

acceptable f o r  emergency operation. 

By 

This case is undesirably oscil latory,  but is  nevertheless 

It was suspected tha t  the t ransients  involved i n  a sudden f a i lu re  might 

overtax a p i l o t ' s  a b i l i t y  t o  recognize and adapt t o  a degraded system i n  suff ic ient  

t h e  t o  avoid loss  of control. However, extensive tests on the simulator failed 

t o  uncover any si tuat ion where t h i s  was the case, as long as the p i l o t  was 

reasonably alert t o  a f a i lu re  possibi l i ty ,  and more important, as long as he was 

experienced i n  flying the degraded systems. The most dangerous cases involved 

abrupt t ransi t ions t o  either the acceleration system o r  the undamped a t t i tude  system. 

Failures requiring t rans i t ion  from an a t t i t ude  t o  a rate system ( loss of a t t i tude  

loop) were no problem whatsoever. 
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CONCLUDING RFSIARKS 

It was the in ten t  of t h i s  paper t o  present comparative information showing 

how the handling qua l i t i es  and control power requirements of hovering VTOL air- 

c r a f t  are affected by the concepts upon which t h e i r  control systems are designed. 

The important trends a re  summarized i n  the  following paragraphs. 

The provision of large amounts of control power is  not, i n  i tself ,  a 

guarantee of good handling qua l i t i es .  

of control system being used, and t o  whether the elements comprising the system 

have been optimized. 

Consideration must be given t o  the type 

Studies indicate that handling qua l i t i es  can be improved and control powers 

reduced i f  control systems are designed t o  s t ab i l i ze  the a i r c r a f t  as w e l l  as t o  

provide control f o r  t he  p i l o t .  

some degree of rate s tabi l izat ion,  but the most e f f ic ien t  systems are those which 

provide a t t i t ude  s tab i l iza t ion  as w e l l .  

Considerations of safety alone w i l l  usually require 

Atti tude-stabil ized systems r e su l t  i n  superior handling qual i t ies  because 

(This was c lear ly  evident even they great ly  a l lev ia te  workloads on the p i l o t .  

i n  calm air conditions, but became more s ignif icant  as disturbance e f fec ts  were 

imposed.) 

t ia l ly  reduced control power levels  because they minimize inadvertent control 

errors and hence require lower control power margins f o r  corrective actions. 

Neither of these benefits  requires large amounts of s tabi l izat ion;  i n  fac t ,  too 

much s tab i l iza t ion  w i l l  eventually r e su l t  i n  poor handling qual i t ies  and excessive 

control power requirements. 

A t  the same time, a t t i tude-stabi l ized systems can operate a t  substan- 

Some currently proposed VTOL configurations may not be able t o  m e e t  even the 

comparatively low control power requirements of the l inear  a t t i t ude  system. 

indicate that t h i s  problem might be overcome by resorting t o  nonlinear control 

system designs. 

Studies 

However, it appears that such systems must be carefully designed, 

since t h e i r  benefits  may be accompanied by subtle, ye t  dangerous, degrading ef fec ts  

on cer ta in  areas of system behavior. 
1 
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. * .  

This information was  obtained from experiments on an advanced simulator 

capable of considerable motion i n  all six degrees of freedom. 

found t o  contribute s ignif icant ly  t o  the realism and, more important, t o  the  

research la t i tude  of the simulator, making it an extremely e f f i c i en t  and val id  

t o o l  f o r  extensive preliminary research. 

cost of motion will, t o  a large extent, be recoverable through the increased 

safety and simplification of subsequent flight research. 

The motion was 

Consequently, it is believed t h a t  the  
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